Published in

Springer Verlag, Journal of Materials Science, 24(49), p. 8226-8233

DOI: 10.1007/s10853-014-8531-6

Links

Tools

Export citation

Search in Google Scholar

Environment segregation of Er3+ emission in bulk sol-gel-derived SiO2-SnO2 glass ceramics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Er-doped (100-x) SiO2-x SnO2 glass-ceramic monoliths were prepared using a sol-gel method. Raman spectroscopic measurements showed the structural evolution of the silica matrix caused by the formation and the growth of SnO2 nanocrystals. Analysis of the photoluminescence properties shows that the quantity of Er3+ ions embedded in the vicinity of SnO2 nanocrystals could be controlled by the SnO2 concentration. We give spectroscopic evidence of energy transfer to erbium ions provided by SnO2 nanocrystals in the silica matrix. The 4I13/2 level decay curves present a double-exponential profile with two lifetimes associated to rare-earth ions in two different environments.