Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Materials, 4(13), p. 345-351, 2014

DOI: 10.1038/nmat3870

Links

Tools

Export citation

Search in Google Scholar

Electric-field control of magnetic order above room temperature

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Controlling magnetism by means of electric fields is a key issue for the future development of low-power spintronics1. Progress has been made in the electrical control of magnetic anisotropy2, domain structure3,4, spin polarization5,6 or critical temperatures7,8. However, the ability to turn on and o robust ferromagnetism at room temperature and above has remained elusive. Here we use ferroelectricity in BaTiO3 crystals to tune the sharp metamagnetic transition temperature of epitaxially grown FeRh films and electrically drive a transition between antiferromagnetic and ferromagnetic order with only a few volts, just above room temperature. The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field e ects from the BaTiO3. Our results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude and open new perspectives for the use of ferroelectrics in magnetic storage and spintronics.