Published in

Nature Research, Nature, 6834(411), p. 176-180, 2001

DOI: 10.1038/35075543

Links

Tools

Export citation

Search in Google Scholar

Evidence against dust-mediated control of glacial-interglacial changes in atmospheric CO2

Journal article published in 2001 by B. A. Maher, P. F. Dennis ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The low concentration of atmospheric CO2 inferred to have been present during glacial periods is thought to have been partly caused by an increased supply of iron-bearing dust to the ocean surface. This is supported by a recent model that attributes half of the CO2 reduction during past glacial stages to iron-stimulated uptake of CO2 by phytoplankton in the Southern Ocean. But atmospheric dust fluxes to the Southern Ocean, even in glacial periods, are thought to be relatively low and therefore it has been proposed that Southern Ocean productivity might be influenced by iron deposited elsewhere-for example, in the Northern Hemisphere-which is then transported south via ocean circulation (similar to the distal supply of iron to the equatorial Pacific Ocean). Here we examine the timing of dust fluxes to the North Atlantic Ocean, in relation to climate records from the Vostok ice core in Antarctica around the time of the penultimate deglaciation (about 130 kyr ago). Two main dust peaks occurred 155 kyr and 130 kyr ago, but neither was associated with the CO2 rise recorded in the Vostok ice core. This mismatch, together with the low dust flux supplied to the Southern Ocean, suggests that dust-mediated iron fertilization of the Southern Ocean did not significantly influence atmospheric CO2 at the termination of the penultimate glaciation.