Published in

Elsevier, BBA - Biomembranes, 8(1808), p. 2009-2018, 2011

DOI: 10.1016/j.bbamem.2011.02.021

Links

Tools

Export citation

Search in Google Scholar

The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The interaction of antipsychotic drugs (AP) with lipids and the subsequent lipid reorganization on model membranes was assessed using a combination of several complementary biophysical approaches (calorimetry, plasmon resonance, fluorescence microscopy, X-ray diffraction and molecular modeling). The effect of haloperidol (HAL), risperidone (RIS), and 9-OH-risperidone (9-OH-RIS) was examined on single lipid and mixtures comprising lipids of biological origin. All APs interact with lipids and induced membrane reorganization. APs showed higher affinity for sphingomyelin than for phosphatidylcholine. Cholesterol increased AP affinity for the lipid bilayer and led to the following AP ranking regarding affinity and structural changes: RIS >9-OH-RIS >HAL. Liquid-ordered domain formation and bilayer thickness were differentially altered by AP addition. Docking calculations helped understanding the observed differences between the APs and offer a representation of their conformation in the lipid bilayer. Present results indicate that AP drugs may change membrane compartmentalization which could differentially modulate the signaling cascade of the dopamine D2 receptor for which APs are ligands.