Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 47(114), p. 15590-15597, 2010

DOI: 10.1021/jp105590h

Links

Tools

Export citation

Search in Google Scholar

Hydration of Lanthanide Chloride Salts: A Quantum Chemical and Classical Molecular Dynamics Simulation Study

Journal article published in 2010 by Cesar Beuchat, Daniel Hagberg, Riccardo Spezia ORCID, Laura Gagliardi
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present the results of a quantum chemical and classical molecular dynamics simulation study of some solutions containing chloride salts of La(3+), Gd(3+), and Er(3+) at various concentrations (from 0.05 to 5 M), with the purpose of understanding their structure and dynamics and analyzing how the coordination varies along the lanthanide series. In the La-Cl case, nine water molecules surround the central La(3+) cation in the first solvation shell, and chloride is present only in the second shell for all solutions but the most concentrated one (5 M). In the Gd(3+) case, the coordination number is ∼8.6 for the two lowest concentrations (0.05 and 0.1 M), and then it decreases rapidly. In the Er(3+) case, the coordination number is 7.4 for the two lowest concentrations (0.05 and 0.1 M), and then it decreases. The counterion Cl(-) is not present in the first solvation shell in the La(3+) case for most of the solutions, but it becomes progressively closer to the central cation in the Gd(3+) and Er(3+) cases, even at low concentrations.