Dissemin is shutting down on January 1st, 2025

Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1086), 2008

DOI: 10.1557/proc-1086-u05-07

Links

Tools

Export citation

Search in Google Scholar

Mechanical Characterization of High Aspect Ratio Silicon Nanolines

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn this study, we performed nanoindentation experiments on two sets of silicon nanolines (SiNLs) of widths 24 nm and 90 nm, respectively, to investigate the mechanical behavior of silicon structures at tens of nanometer scale. The high height-to-width aspect ratio (∼15) SiNLs were fabricated by an anisotropic wet etching (AWE) method, having straight and nearly atomically flat sidewalls. In the test, buckling instability was observed at a critical load, which was fully recoverable upon unloading. It was found that friction at the contact between the indenter and SiNLs played an important role in the buckling response. Based on a finite element model (FEM), the friction coefficient was estimated to be in a range of 0.02 to 0.05. The strain to failure was estimated to range from 3.8% for 90 nm lines to 7.5% for 24 nm lines.