Published in

Wiley, European Journal of Inorganic Chemistry, 6(2008), p. 863-868, 2008

DOI: 10.1002/ejic.200700977

Links

Tools

Export citation

Search in Google Scholar

Manganese Doped Zirconia Nanocrystals

Journal article published in 2007 by Guylhaine Clavel, Marc-Georg Willinger ORCID, David Zitoun, Nicola Pinna ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In recent theoretical work, it was predicted that transition-metal-doped zirconia (ZrO2) can be ferromagnetic at room temperature with a dependence on the metal dopant and its oxidation state and concentration.1 For experimental verification of these predictions, manganese-doped ZrO2 nanoparticles were synthesized. The synthesis was achieved by the benzyl alcohol route, which led to high-quality nanocrystals with uniform size and shape. The obtained particles present a homogeneous distribution of the magnetic ion. The crystallographic phase was studied by XRD, electron diffraction, and high-resolution TEM. The doping efficiency was determined at the macroscopic level by chemical analysis and at the nanoscale level by electron energy loss spectrometry. The local structure of the manganese ions in the ZrO2 matrix was characterized by electron paramagnetic resonance. Finally, the magnetic properties of the obtained nanocrystals were investigated by susceptibility measurements.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)