Published in

Wiley, Chemistry - A European Journal, 14(14), p. 4201-4213, 2008

DOI: 10.1002/chem.200701638

Links

Tools

Export citation

Search in Google Scholar

Electroactive Nanorods and Nanorings Designed by Supramolecular Association of π-Conjugated Oligomers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In investigations into the design and isolation of semiconducting nano-objects, the synthesis of a new bisureido -conjugated organogelator has been achieved. This oligo(phenylenethienylene) derivative was found to be capable of forming one-dimensional supramolecular assemblies, leading to the gelation of several solvents. Its self-assembling properties have been studied with different techniques (AFM, EFM, etc.). Nano-objects have successfully been fabricated from the pristine organogel under appropriate dilution conditions. In particular, nanorods and nanorings composed of the electroactive organogelator have been isolated and characterized. With additional support from an electrochemical study of the organogelator in solution, it has been demonstrated by the EFM technique that such nano-objects were capable of exhibiting charge transport properties, a requirement in the fabrication of nanoscale optoelectronic devices. It was observed that positive charges can be injected and delocalized all along an individual nano-object (nanorod and nanoring) over micrometers and, remarkably, that no charge was stored in the center of the nanoring. It was also observed that topographic constructions in the nanostructures prevent transport and delocalization. The same experiments were performed with a negative bias (i.e., electron injection), but no charge delocalization was observed. These results could be correlated with the nature of 1, which is a good electron-donor, so it can easily be oxidized, but can be reduced only with difficulty.