Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Non-Crystalline Solids, 43(356), p. 2251-2257, 2010

DOI: 10.1016/j.jnoncrysol.2010.08.023

Links

Tools

Export citation

Search in Google Scholar

Mechanical behavior under nanoindentation of a new Ni-based glassy alloy produced by melt-spinning and copper mold casting

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An investigation was made into the thermal stability and mechanical behavior under nanoindentation of a new glassy alloy with composition Ni50Nb28Zr22, produced in the form of melt-spun ribbons and copper mold-cast wedges. The alloy composition was designed based on the lambda criterion combined with the electronegativity difference among the elements. X-ray diffraction and scanning electron microscopy confirmed that the ribbons and wedges (up to 200 μm in thickness) are amorphous. The thermal properties of these samples were evaluated by differential scanning calorimetry (DSC). Nanoindentation revealed that the hardness of this alloy, around 10 GPa, is among the highest reported for metallic glasses. Remarkably, the cast wedge exhibits greater hardness and higher elastic modulus than the ribbon. This correlates with the larger amount of frozen-in free volume in the ribbons than in the cast wedges, as evidenced by DSC. In addition, finite element simulations of nanoindentation curves were performed. The Mohr–Coulomb yield criterion allows for better adjustment of the experimental data than the pressure-independent Tresca yield criterion. The simulations also reveal that the cohesive stress in the ribbons is lower than in the wedges, which explains the difference in hardness and Young's modulus between the two samples.