Published in

American Physiological Society, American Journal of Physiology - Renal Physiology, 5(300), p. F1076-F1088, 2011

DOI: 10.1152/ajprenal.00329.2010

Links

Tools

Export citation

Search in Google Scholar

Intrarenal transfer of an intracellular fluorescent fusion of angiotensin II selectively in proximal tubules increases blood pressure in rats and mice

Journal article published in 2011 by Xiao C. Li, Julia L. Cook, Isabelle Rubera ORCID, Michel Tauc ORCID, Fan Zhang, Jia L. Zhuo
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The present study tested the hypothesis that intrarenal adenoviral transfer of an intracellular cyan fluorescent fusion of angiotensin II (ECFP/ANG II) selectively in proximal tubules of the kidney increases blood pressure by activating AT1 (AT1a) receptors. Intrarenal transfer of ECFP/ANG II was induced in the superficial cortex of rat and mouse kidneys, and the sodium and glucose cotransporter 2 (sglt2) promoter was used to drive ECFP/ANG II expression selectively in proximal tubules. Intrarenal transfer of ECFP/ANG II induced a time-dependent, proximal tubule-selective expression of ECFP/ANG II in the cortex, which peaked at 2 wk and was sustained for 4 wk. ECFP/ANG II expression was low in the glomeruli and the entire medulla and was absent in the contralateral kidney or extrarenal tissues. At its peak of expression in proximal tubules at day 14, ANG II was increased by twofold in the kidney ( P < 0.01) and more than threefold in proximal tubules ( P < 0.01), but remained unchanged in plasma or urine. Systolic blood pressure was increased in ECFP/ANG II-transferred rats by 28 ± 6 mmHg ( P < 0.01), whereas fractional sodium excretion was decreased by 20% ( P < 0.01) and fractional lithium excretion was reduced by 24% ( P < 0.01). These effects were blocked by losartan and prevented in AT1a knockout mice. Transfer of a scrambled ECFP/ANG IIc had no effects on blood pressure, kidney, and proximal tubule ANG II, or sodium excretion. These results provide evidence that proximal tubule-selective transfer of an intracellular ANG II fusion protein increases blood pressure by activating AT1a receptors and increasing sodium reabsorption in proximal tubules.