Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Experimental Neurology, (262), p. 138-151, 2014

DOI: 10.1016/j.expneurol.2014.07.001

Links

Tools

Export citation

Search in Google Scholar

Translating biological findings into new treatment strategies for amyotrophic lateral sclerosis (ALS)

Journal article published in 2014 by Lindsay Poppe, Laura Rué ORCID, Wim Robberecht, Ludo Van Den Bosch
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Amyotrophic lateral sclerosis (ALS) is characterized by the selective death of motor neurons in the motor cortex, brainstem and spinal cord. It is a neurodegenerative disorder with high genetic and phenotypic variability. In most patients, the cause of the disease is unknown. Until now, no treatment strategy has been discovered with the exception of riluzole which has a moderate effect on the disease process. While developing a new causal therapy targeting a specific disease-causing gene can have a huge effect on the disease process, only a limited number of ALS patients will benefit from such a therapy. Alternatively, pathogenic processes that are common in ALS patients with different etiology can also be targeted. The effect of such a modifying treatment will be smaller, but the target population will be larger as more ALS patients could benefit. In this review, we summarize the evidence for the involvement of different biological processes in the pathogenesis of ALS and will discuss how strategies influencing these processes can be translated into new therapeutic approaches. In order to further improve this translational step, there is an urgent need for a better understanding of the underlying mechanism(s), for new ALS animal models and for rigorous protocols to perform preclinical studies.