Published in

Wiley, FEBS Letters, 1-2(399), p. 166-170, 1996

DOI: 10.1016/s0014-5793(96)01231-8

Links

Tools

Export citation

Search in Google Scholar

The Oligomerization Domain of p53: Crystal Structure of the Trigonal Form

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The structure of the oligomerization domain of the p53 tumor suppressor protein was determined in the trigonal crystal form, using a refined NMR structure as a model. A synthetic peptide comprising residues 319-360 of human p53 crystallized in the space group P3(1)21. There is one biologically relevant tetrameric domain in the crystallographic asymmetric unit. The structure was refined jointly with NMR data, only the third such case (the previous examples being IL-1beta (Shaanan, B., Gronenborn, A.M., Cohen, G.H., Gilliland, G.L., Veerapandian, B., Davies, D.R. and Clore, G.M. (1992) Science 257, 961-964 [1]) and BPTI (Schiffer, C., Huber, R., Wuthrich, K. and Van Gunsteren, W.F. (1994) J. Mol. Biol. 241, 588-599 [21)), to 2.5 A resolution with an R factor of 0.207. The distribution of tumor-derived mutations in the oligomerization region together with structural and biological data suggest a strategy for the design of antitumor therapeutics.