Dissemin is shutting down on January 1st, 2025

Published in

SpringerOpen, Nanoscale Research Letters, 1(7), 2012

DOI: 10.1186/1556-276x-7-375

Links

Tools

Export citation

Search in Google Scholar

Copper-selective electrochemical filling of macropore arrays for through-silicon via applications

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this article, the physico-chemical and electrochemical conditions of through-silicon via formation were studied. First, macropore arrays were etched through a low doped n-type silicon wafer by anodization under illumination into a hydrofluoric acid-based electrolyte. After electrochemical etching, ‘almost’ through-silicon macropores were locally opened by a backside photolithographic process followed by anisotropic etching. The 450 × 450-μm² opened areas were then selectively filled with copper by a potentiostatic electrochemical deposition. Using this process, high density conductive via (4.5 × 105 cm−²) was carried out. The conductive paths were then electrically characterized, and a resistance equal to 32 mΩ/copper-filled macropore was determined.