Published in

American Institute of Physics, Journal of Applied Physics, 7(109), p. 07B524

DOI: 10.1063/1.3559504

Links

Tools

Export citation

Search in Google Scholar

Magnetic nanoparticles with bulklike properties (invited)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The magnetic behavior of Fe3−xO4 nanoparticles synthesized by either high-temperature decomposition of an organic iron precursor or low-temperature coprecipitation in aqueous conditions is compared. Transmission electron microscopy, x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and magnetization measurements show that nanoparticles synthesized by thermal decomposition display high crystal quality and bulklike magnetic and electronic properties, while nanoparticles synthesized by coprecipitation show much poorer crystallinity and particlelike phenomenology, including reduced magnetization, high closure fields, and shifted hysteresis loops. The key role of the crystal quality is thus suggested, because particlelike behavior for particles larger than about 5 nm is observed only when the particles are structurally defective. These conclusions are supported by Monte Carlo simulations. It is also shown that thermal decomposition is capable of producing nanoparticles that, after further stabilization in physiological conditions, are suitable for biomedical applications such as magnetic resonance imaging or biodistribution studies.