Published in

American Chemical Society, Langmuir, 12(22), p. 5443-5450, 2006

DOI: 10.1021/la060184g

Links

Tools

Export citation

Search in Google Scholar

Microscopic and Voltammetric Characterization of Bioanalytical Platforms Based on Lactate Oxidase

Journal article published in 2006 by A. Parra ORCID, E. Casero ORCID, L. Vázquez ORCID, J. Jin, F. Pariente, E. Lorenzo ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A microscopic and voltammetric characterization of lactate oxidase- (LOx-) based bioanalytical platforms for biosensor applications is presented. In this context, emphasis is placed on amperometric biosensors based on LOx that have been immobilized by direct absorption on carbon surfaces, in particular, glassy carbon (GC) and highly ordered pyrolytic graphite (HOPG). The immobilized LOx layers have been characterized using atomic force microscopy (AFM) under liquid conditions and cyclic voltammetry. In addition, spatially resolved mapping of enzymatic activity has been carried out using scanning electrochemical microscopy (SECM). In the presence of lactate with hydroxymethylferrocene (HMF) as a redox mediator in solution, biosensors obtained by direct adsorption of LOx onto GC electrodes exhibited a clear electrocatalytic activity, and lactate could be determined amperometrically at 300 mV versus SSCE. The proposed biosensor also exhibits good operating performance in terms of linearity, detection limit, and lifetime.