Published in

Springer Verlag, Nano Research, 2(8), p. 566-575

DOI: 10.1007/s12274-014-0677-7

Links

Tools

Export citation

Search in Google Scholar

Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Highly active and low-cost catalysts for electrochemical reactions such as the hydrogen evolution reaction (HER) are crucial for the development of efficient energy conversion and storage technologies. Theoretical simulations have been instrumental in revealing the correlations between the electronic structure of materials and their catalytic activity, and guide the prediction and development of improved catalysts. However, difficulties in accurately engineering the desired atomic sites lead to challenges in making direct comparisons between experimental and theoretical results. In MoS2, the Mo-edge has been demonstrated to be active for HER whereas the S-edge is inert. Using a computational descriptor-based approach, we predict that by incorporating transition metal atoms (Fe, Co, Ni, or Cu) the S-edge site should also become HER active. Vertically standing, edge-terminated MoS2 nanofilms provide a well-defined model system for verifying these predictions. The transition metal doped MoS2 nanofilms show an increase in exchange current densities by at least two-fold, in agreement with the theoretical calculations. This work opens up further opportunities for improving electrochemical catalysts by incorporating promoters into particular atomic sites, and for using well-defined systems in order to understand the origin of the promotion effects.