Published in

Springer (part of Springer Nature), Acta Neuropathologica, 3(124), p. 339-352

DOI: 10.1007/s00401-012-1022-4

Links

Tools

Export citation

Search in Google Scholar

The genetics and neuropathology of amyotrophic lateral sclerosis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons leading to death from respiratory failure within about 3 years of symptom onset. A family history of ALS is obtained in about 5 % but the distinction between familial and apparently sporadic ALS is artificial and genetic factors play a role in all types. For several years, only one gene was known to have a role in ALS pathogenesis, SOD1. In the last few years there has been a rapid advance in our genetic knowledge of the causes of ALS, and the relationship of the genetic subtypes with pathological subtypes and clinical phenotype. Mutations in the gene for TDP-43 protein, TARDBP, highlight this, with pathology mimicking closely that found in other types of ALS, and a phenotypic spectrum that includes frontotemporal dementia. Mutations in the FUS gene, closely related to TDP-43, lead to a similar clinical phenotype but distinct pathology, so that the three pathological groups represented by SOD1, TARDBP, and FUS are distinct. In this review, we explore the genetic architecture of ALS, highlight some of the genes implicated in pathogenesis, and describe their phenotypic range and overlap with other diseases.