Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 10(1791), p. 991-996, 2009

DOI: 10.1016/j.bbalip.2009.05.004

Links

Tools

Export citation

Search in Google Scholar

Forkhead box transcription factor O1 inhibits cholesterol 7α-hydroxylase in human hepatocytes and in high fat diet-fed mice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The conversion of cholesterol to bile acids is the major pathway for cholesterol catabolism. Bile acids are metabolic regulators of triglycerides and glucose metabolism in the liver. This study investigated the roles of FoxO1 in the regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in primary human hepatocytes. Adenovirus-mediated expression of a phosphorylation defective and constitutively active form of FoxO1 (FoxO1-ADA) inhibited CYP7A1 mRNA expression and bile acid synthesis, while siRNA knockdown of FoxO1 resulted in a approximately 6-fold induction of CYP7A1 mRNA in human hepatocytes. Insulin caused rapid exclusion of FoxO1 from the nucleus and resulted in the induction of CYP7A1 mRNA expression, which was blocked by FoxO1-ADA. In high fat diet-fed mice, CYP7A1 mRNA expression was repressed and inversely correlated to increase hepatic FoxO1 mRNA expression and FoxO1 nuclear retention. In conclusion, our current study provides direct evidence that FoxO1 is a strong repressor of CYP7A1 gene expression and bile acid synthesis. Impaired regulation of FoxO1 may cause down-regulation of CYP7A1 gene expression and contribute to dyslipidemia in insulin resistance.