Published in

Elsevier, Veterinary Immunology and Immunopathology, 3-4(105), p. 343-352, 2005

DOI: 10.1016/j.vetimm.2005.02.007

Links

Tools

Export citation

Search in Google Scholar

The genetic dissection of immune response using gene-expression studies and genome mapping

Journal article published in 2005 by Dirk-Jan de Koning ORCID, Orjan Carlborg, Chris S. Haley
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Functional genomics has been applied to the genetic dissection of immune response in different ways: (1) experimental crosses between lines that differ in their (non-) specific immune response have been used to detect quantitative trait loci (QTL) underlying these differences. (2) The measurement of gene expression levels for thousands of genes using microarrays or oligonucleotide chips to identify differential expression with regard to antigen challenge: (a) before and after infection, (b) resistant versus susceptible lines, or (c) combinations of both. Interpretation of QTL results is hampered by the fact that confidence regions of the QTL are large and can contain hundreds of potential candidate genes for the QTL. At the same time, the microarray experiments tend to show large numbers of differentially expressed genes without identifying the relationships between these genes. In the recently proposed 'genetical genomics' framework, members of a segregating population are characterised for genome-wide molecular markers and for gene expression levels. This facilitates the mapping of expression-QTL (eQTL): loci in the genome that control the expression of genes. Initial applications of this approach are critically reviewed and potential applications of this approach with regard to immune response are presented.