Dissemin is shutting down on January 1st, 2025

Published in

Springer, Conservation Genetics, 4(14), p. 809-821, 2013

DOI: 10.1007/s10592-013-0476-9

Links

Tools

Export citation

Search in Google Scholar

Microsatellite markers reveal clear geographic structuring among threatened noble crayfish (Astacus astacus) populations in Northern and Central Europe

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Noble crayfish (Astacus astacusL.), the most highly valued freshwater crayfish in Europe, is threatened due to a long-term population decline caused mainly by the spread of crayfish plague. Reintroduction of the noble crayfish into restored waters is a common practice but the geographic and genetic origin of stocking material has rarely been considered, partially because previous genetic studies have been hampered by lack of nuclear gene markers with known inheritance. This study represents the first large scale population genetic survey of the noble crayfish (633 adults from 18 locations) based on 10 newly developed microsatellite markers. We focused primarily on the Baltic Sea area (Estonia, Finland and Sweden) where the largest proportion of the remaining populations exists. To allow comparisons, samples from the Black Sea catchment (the Danube drainage) were also included. Two highly differentiated population groups were identified corresponding to the Baltic Sea and the Black Sea catchments, respectively. The Baltic Sea catchment popu-lations had significantly lower genetic variation and private allele numbers than the Black Sea catchment populations. Within the Baltic Sea area, a clear genetic structure was revealed with population samples corresponding well to their geographic origin, suggesting little impact of long-distance translocations. The clear genetic structure strongly suggests that the choice of stocking material for re-intro-ductions and supplemental releases needs to be based on empirical genetic knowledge.