Published in

Elsevier, Applied Catalysis B: Environmental, (129), p. 450-459, 2013

DOI: 10.1016/j.apcatb.2012.09.052

Links

Tools

Export citation

Search in Google Scholar

Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO2-La2O3

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The low temperature reforming of methane by carbon dioxide is studied over a calcium oxide promoted Ni catalyst supported on a tetragonal zirconia stabilized by lanthana, which presents an improved stability compared to the non-promoted catalyst. Steady-state catalytic activity measurements, diffuse reflectance infrared Fourier transform spectroscopic analysis and isotopic temporal analysis of products experiments reveal the occurrence of a bifunctional mechanism on the promoted catalyst: methane is activated on the Ni particles, carbon dioxide interacts with the calcium oxide to form carbonates which scavenge carbon from nickel at the Ni-O-Ca interphase, thus restoring Ni particles to the original state. This is assumed to hinder the formation of deactivating coke, which explains the improved catalytic stability of the promoted catalyst. The main route for the carbon deposit formation is found to be the methane cracking in spite of the low temperature reaction.