Published in

Mineralogical Society of America, American Mineralogist, 8-9(100), p. 1940-1951, 2015

DOI: 10.2138/am-2015-5173

Links

Tools

Export citation

Search in Google Scholar

Magnetic anisotropy in natural amphibole crystals

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for mineral fabric in deformed rocks. To do so quantitatively, it is necessary to quantify the intrinsic magnetic anisotropy of single crystals of rock-forming minerals. Amphiboles are common in mafic igneous and metamorphic rocks and often define rock texture due to their general prismatic crystal habits. Amphiboles may dominate the magnetic anisotropy in intermediate to felsic igneous rocks and in some metamorphic rock types, because they have a high Fe concentration and they can develop a strong crystallographic preferred orientation. In this study, the AMS is characterized in 28 single crystals and 1 crystal aggregate of compositionally diverse clino- and ortho-amphiboles. High-field methods were used to isolate the paramagnetic component of the anisotropy, which is unaffected by ferromagnetic inclusions that often occur in amphibole crystals. Laue imaging, laser ablation-inductively coupled plasma-mass spectrometry, and Mössbauer spectroscopy were performed to relate the magnetic anisotropy to crystal structure and Fe concentration. The minimum susceptibility is parallel to the crystallographic a*-axis and the maximum susceptibility is generally parallel to the crystallographic b-axis in tremolite, actinolite, and hornblende. Gedrite has its minimum susceptibility along the a-axis, and maximum susceptibility aligned with c. In richterite, however, the intermediate susceptibility is parallel to the b-axis and the minimum and maximum susceptibility directions are distributed in the a-c plane. The degree of anisotropy, kʹ, increases generally with Fe concentration, following a linear trend: kʹ = 1.61 × 10-9 Fe - 1.17 × 10-9 m3/kg. Additionally, it may depend on the Fe2+/Fe3+ ratio. For most samples, the degree of anisotropy increases by a factor of approximately 8 upon cooling from room temperature to 77 K. Ferroactinolite, one pargasite crystal and riebeckite show a larger increase, which is related to the onset of local ferromagnetic (s.l.) interactions below about 100 K. This comprehensive data set increases our understanding of the magnetic structure of amphiboles, and it is central to interpreting magnetic fabrics of rocks whose AMS is controlled by amphibole minerals.