Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Biochemistry, 19(45), p. 5933-5938, 2006

DOI: 10.1021/bi060334m

Links

Tools

Export citation

Search in Google Scholar

The Nucleotide Switch of Tubulin and Microtubule Assembly: A Polymerization-Driven Structural Change †

Journal article published in 2006 by Rubén M. Buey ORCID, J. Fernando Díaz, José M. Andreu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

GTP-binding proteins from the tubulin family, including alphabeta-tubulin, gamma-tubulin, bacterial tubulin, and FtsZ, are key components of the cytoskeleton and play central roles in chromosome segregation and cell division. The nucleotide switch of alphabeta-tubulin is triggered by GTP hydrolysis and regulates microtubule assembly dynamics. The structural mechanism of the switch and how it modulates assembly are beginning to be understood. A conserved structural change between the active and inactive states, different from other GTPases, may be extracted from recent tubulin and FtsZ structures. From these and the biochemical properties of tubulin, the new concept emerges that, contrary to what was thought, unassembled tubulin-GTP is in the inactive, curved conformation as in tubulin-GDP rings, and it is driven into the straight microtubule conformation by the assembly contacts; binding of the GTP gamma-phosphate only lowers the free energy difference between the curved and straight forms.