Published in

Elsevier, Journal of Crystal Growth, (420), p. 47-56, 2015

DOI: 10.1016/j.jcrysgro.2015.01.040

Links

Tools

Export citation

Search in Google Scholar

Bottom-up engineering of InAs at the nanoscale: From V-shaped nanomembranes to nanowires

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ability to rationally tune the morphology of nanostructures is a fundamental milestone in nanoscale engineering. In particular, the possibility to switch between different shapes within the same material system represents a further step in the development of complex nanoscale devices and it increases the potential of nanostructures in practical applications. We recently reported a new form of InAs nanostructures growing epitaxially on Si substrates as vertical V-shaped membranes. Here we demonstrate the possibility of modifying the shape of these nanomembranes and turning them into nanowires by modulating the surface roughness of the substrate by varying the surface treatment. We show that the growth of nanomembranes is favored on smooth surfaces. Conversely rough surfaces enhance the growth of nanowires. We also show that the V/III ratio plays a key role in determining the absolute yield, i.e. how many nanostructures form during growth. These results envisage a new degree of freedom in the engineering of bottom-up nanostructures and contribute to the achievement of nanostructure networks.