Published in

IOP Publishing, Smart Materials and Structures, 5(19), p. 055006, 2010

DOI: 10.1088/0964-1726/19/5/055006

Links

Tools

Export citation

Search in Google Scholar

Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting

Journal article published in 2010 by A. Navid, C. S. Lynch, L. Pilon ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper aims at improving the performance of the poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer for pyroelectric infrared detection and direct thermal to electrical energy conversion. Three different types of samples were prepared and examined: commercial, purified and porous films. Here, full characterization of the thermophysical and electrical properties relevant to pyroelectric infrared detection and energy conversion of both purified and porous P(VDF-TrFE) thin films is presented. Properties measured include (1) density, (2) ferroelectric to paraelectric phase transition temperature, (3) enthalpy of change of phase, (4) electrical resistivity and (5) ferroelectric hysteresis, as well as (6) specific heat, (7) dielectric constant, (8) loss tangent and (9) pyroelectric coefficient as a function of temperature. The figures of merit for infrared detection FV, FI and FD were improved by 47.0, 59.6 and 51.6%, respectively, for the purified films while the porous films with a porosity of 33% showed an improvement of 52.8, 66.3 and 62.6%, respectively, when compared to those of dense commercial P(VDF-TrFE) films. In addition, figures of merit for energy harvesting, FE and k2, indicate that the purified and porous films are attractive for thermal to electrical energy conversion as well.