Published in

American Chemical Society, Nano Letters, 8(11), p. 3499-3502, 2011

DOI: 10.1021/nl2022306

Links

Tools

Export citation

Search in Google Scholar

Superplastic Deformation of Defect-Free Au Nanowires via Coherent Twin Propagation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report that defect-free Au nanowires show superplasticity on tensile deformation. Evidences from high-resolution electron microscopes indicated that the plastic deformation proceeds layer-by-layer in an atomically coherent fashion to a long distance. Furthermore, the stress-strain curve provides full interpretation of the deformation. After initial superelastic deformation, the nanowire shows superplastic deformation induced by coherent twin propagation, completely reorientating the crystal from <110> to <100>. Uniquely well-disciplined and long-propagating atomic movements deduced here are ascribed to the superb crystallinity as well as the radial confinement of the Au nanowires.