Elsevier, European Journal of Pharmacology, 1-3(721), p. 116-125, 2013
DOI: 10.1016/j.ejphar.2013.09.044
Full text: Download
Expanding on our previous findings demonstrating that microparticles (MPs) spread cancer multidrug resistance, we now show that MPs sequester drugs, reducing the free drug concentration available to cells. MPs were isolated from drug-sensitive and drug-resistant sub-clones of a human breast adenocarcinoma cell line and from human acute lymphoblastic leukemia cells. MPs were assessed for size, mitochondria, RNA and phospholipid content, P-glycoprotein (P-gp) expression and orientation and ATPase activity relative to drug sequestration capacity. Of the drug classes examined, MPs sequestered the anthracycline class to a significant degree. The degree of sequestration was likely due to the size of MPs and thus the amount of cargo they contain, to which the anthracyclines bind. Moreover, a proportion of the P-gp present on MPs was inside-out in orientation, enabling it to influx drugs rather than its typical efflux function. This was confirmed by surface immunofluorescence and by assessment of drug-stimulated ATPase activity following MP permeabilization. Thus we determined that breast cancer MPs carried a proportion of their P-gp oriented inside-out, providing active sequestration within the microvesicular compartment. These results demonstrate a capacity for MPs to sequester chemotherapeutic drugs, which has a predominantly active sequestration component for MPs derived from drug-resistant cells and a predominantly passive component for MPs derived from drug-sensitive cells. This reduction in available drug concentration has potential to contribute to a parallel pathway and complements that of the intercellular transfer of P-gp. These findings lend further support to the role of MPs in limiting the successful management of cancer.