Published in

Elsevier, Journal of Biological Chemistry, 11(276), p. 7913-7918, 2001

DOI: 10.1074/jbc.m009793200

Links

Tools

Export citation

Search in Google Scholar

Both Subunits of the Dimeric Plant Photoreceptor Phytochrome Require Chromophore for Stability of the Far-red Light-absorbing Form

Journal article published in 2000 by Lars Hennig ORCID, Eberhard Schäfer
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The dimeric plant photoreceptor phytochrome is converted from its inactive red light-absorbing form (Pr) into the active far-red light-absorbing form (Pfr) upon light absorption. Dynamics of Pfr generation and of thermal Pfr-to-Pr conversion are of fundamental importance for inducing adequate responses to light signals. Here, we analyzed the role of subunit interactions on spectroscopic properties of dimeric phytochrome A. Using a coexpression system and affinity chromatography, we prepared mixed phytochrome dimers that can incorporate the essential chromophore only in one subunit. We demonstrate that such mixed dimers have unaltered difference spectra. In contrast, dark reversion differed greatly between Pfr-Pfr homodimers and Pfr-Pr heterodimers, the former being about 100-fold more stable. Temperature dependence of reaction rates revealed an additional stabilization of about 4 kcal/mol in homodimers. Consequences of these findings are discussed in relation to the biological function of, and functional diversification between, phytochrome family members.