Published in

Wiley, Traffic, 6(1), p. 494-503, 2000

DOI: 10.1034/j.1600-0854.2000.010607.x

Links

Tools

Export citation

Search in Google Scholar

Both Calmodulin and the Unconventional Myosin Myr4 Regulate Membrane Trafficking Along the Recycling Pathway of MDCK Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In epithelial cells, endocytosed transferrin and its receptor, which cycle basolaterally, have been shown to transit through recycling endosomes which can also be accessed by markers internalized from the apical surface. In this work, we have used an in vitro assay to follow transfer of an endocytosed marker from apical or basolateral early endosomes to recycling endosomes labeled with transferrin. We show that calmodulin (CaM) function is necessary for transfer and identified myr4, a member of the unconventional myosin superfamily known to use CaM as a light chain, as a possible target protein for CaM. Since myr4 is believed to act as an actin-based mechanoenzyme, we tested the role of polymerized actin in the assay. Our data show that conditions which either prevent actin polymerization or induce the breakdown of existing filaments strongly inhibit interactions between recycling endosomes and either set of early endosomes. Altogether, our data indicate that trafficking at early steps of the endocytic pathway in Madin-Darby Canine Kidney cells depends on the actin-based mechanoenzyme myr4, its light chain CaM, and polymerized actin.