Published in

Elsevier, Forest Ecology and Management, (360), p. 287-296

DOI: 10.1016/j.foreco.2015.10.043

Links

Tools

Export citation

Search in Google Scholar

Recruitment patterns of four tree species along elevation gradients in Mediterranean mountains: Not only climate matters

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Evidence of tree regeneration failure of some species in the Iberian Peninsula forests warns us about the impact that the global change may exert on the preservation of Mediterranean forests, such as we know them. Predictions agree about an exacerbation of the summer drought there, acknowledged as the main limiting factor for the recruits' survival. On the other hand, many studies have also proved the relevant role that local heterogeneity has over the spatial distribution of forest species recruitment by providing safe sites. Therefore, to unravel how climate interacts with local factors over juveniles' performance seems crucial for the design of successful management strategies that allow facing the global warming. Here, we surveyed the natural recruitment of four dominant tree species in seven mountainous regions in the Iberian Peninsula, along entire elevational ranges as surrogates of their climatic ranges. Two of them have alpine and temperate distributions with populations at their rear edge in the Spanish mountains: Fagus sylvatica and Pinus uncinata; and the other two have a genuine Mediterranean distribution: Quercus ilex and Pinus nigra. Our main goal was to analyze for each species the effect of climate, local factors (i.e. light availability, stand structure and ground cover) and the interactions among them to identify the main drivers leading the regeneration process, assessed in terms of presence, abundance and mean annual growth of juveniles. The results showed different environmental factors determining the recruitment patterns of each species. Nevertheless, they highlighted the pervasive role exerted by both climate and fine scale factors, particularly the co-occurring vegetation on recruits' abundance, and the light availability on their growth. Moreover, we found some interactions among annual mean temperature and local factors, suggesting that climate and local heterogeneity act hierarchically, i.e. the local conditions may mitigate or exacerbate the impact of climate on juveniles. These results advocate for further research to increase our knowledge on the complex net of interactions among factors involved in recruitment at different scales, which in turn should be taken into account and incorporated in forthcoming management strategies.