Links

Tools

Export citation

Search in Google Scholar

The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune SIGNALING pathways and suppression of pathogen virulence factors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Brown algal extracts have long been used as feed supplements to promote health of farm animals. Here, we show new molecular insights in to the mechanism of action of a fucose containing polymer (FCP) rich fraction from the brown seaweed Ascophyllum nodosum using the Caenorhabditis elegans-Pseudomonas aeruginosa PA14 infection model. FCP enhanced survival of C. elegans against pathogen stress, correlated with up-regulation of key immune response genes such as: lipases, lysozyme (lys-1), saponin-like protein (spp-1), thaumatin-like protein (tlp-1), matridin SK domain protein (msk-1), antibacterial protein (abf-1), and lectin family protein (lfp). Further, FCP caused down regulation of P. aeruginosa quorum sensing genes: (lasI, lasR, rhlI, and rhlR), secreted virulence factors (lipase, proteases, and elastases) and toxic metabolites (pyocyanin, hydrogen cyanide, and siderophore). Biofilm formation and motility of pathogenic bacteria were also greatly attenuated when the culture media were treated with FCP. Interestingly, FCP failed to mitigate the pathogen stress in skn-1, daf-2, and pmk-1 mutants of C. elegans. This indicated that, FCP treatment acted on the regulation of fundamental innate immune pathways, which are conserved across the majority of organisms including humans. This study suggests the possible use of FCP, a seaweed component, as a functional food source for healthy living.