Published in

Elsevier, Waste Management, 6(30), p. 983-994

DOI: 10.1016/j.wasman.2010.02.023

Links

Tools

Export citation

Search in Google Scholar

The use of life cycle assessment for the comparison of biowaste composting at home and full scale

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Environmental impacts and gaseous emissions associated to home and industrial composting of the source-separated organic fraction of municipal solid waste have been evaluated using the environmental tool of life cycle assessment (LCA). Experimental data of both scenarios were experimentally collected. The functional unit used was one ton of organic waste. Ammonia, methane and nitrous oxide released from home composting (HC) were more than five times higher than those of industrial composting (IC) but the latter involved within 2 and 53 times more consumption or generation of transport, energy, water, infrastructures, waste and Volatile Organic Compounds (VOCs) emissions than HC. Therefore, results indicated that IC was more impacting than HC for four of the impact categories considered (abiotic depletion, ozone layer depletion, photochemical oxidation and cumulative energy demand) and less impacting for the other three (acidification, eutrophication and global warming). Production of composting bin and gaseous emissions are the main responsible for the HC impacts, whereas for IC the main contributions come from collection and transportation of organic waste, electricity consumption, dumped waste and VOCs emission. These results suggest that HC may be an interesting alternative or complement to IC in low density areas of population.