Published in

Elsevier, Biochemical and Biophysical Research Communications, 3(319), p. 888-893, 2004

DOI: 10.1016/j.bbrc.2004.05.071

Links

Tools

Export citation

Search in Google Scholar

Regulation of the phosphorylation of the inositol 1,4,5-trisphosphate receptor by protein kinase C

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)<or=2microM) and this inhibition was further potentiated by calmodulin (CaM), while the Ca(2+)-independent CaM mutant CaM(1234) was ineffective. Ca(2+) and CaM, however, did not inhibit IP(3)R3 phosphorylation by PKC. Taken together, these findings show that Ca(2+) and CaM differentially regulate the PKC-mediated phosphorylation of IP(3)R1 and IP(3)R3 and are indicative for a role for the inhibition of IP(3)R1 phosphorylation by Ca(2+) and CaM in the negative slope of the bell-shaped effect of Ca(2+) on IP(3)R function.