Published in

American Institute of Physics, Journal of Applied Physics, 22(115), p. 223701, 2014

DOI: 10.1063/1.4882117

Links

Tools

Export citation

Search in Google Scholar

Analysis of the electrical properties of Cr/n-BaSi2 Schottky junction and n-BaSi2/p-Si heterojunction diodes for solar cell applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Current status and future prospects towards BaSi2 pn junction solar cells are presented. As a preliminary step toward the formation of BaSi2 homojunction diodes, diodes with a Cr/n-BaSi2 Schottky junction and an n-BaSi2/p-Si hetero-junction have been fabricated to investigate the electrical properties of the n-BaSi2. Clear rectifying properties were observed in the current density versus voltage characteristics in both diodes. From the capacitance-voltage measurements, the build-in potential, VD, was 0.53 V in the Cr/n-BaSi2 Schottky junction diode, and the Schottky barrier height was 0.73 eV calculated from the thermoionic emission theory; the VD was about 1.5 V in the n-BaSi2/p-Si hetero-junction diode, which was consistent with the difference in the Fermi level between the n-BaSi2 and the p-Si.