Published in

Trans Tech Publications, Materials Science Forum, (711), p. 154-158, 2012

DOI: 10.4028/www.scientific.net/msf.711.154

Links

Tools

Export citation

Search in Google Scholar

Dose Influence on Physical and Electrical Properties of Nitrogen Implantation in 3C-SiC on Si

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, we studied the influence of nitrogen implantation dose on both physical and electrical properties in 3C-SiC grown on Si (100) substrate. Scanning Transmission Electron Microscopy characterizations prove that high dose is responsible for amorphization of the implanted layer and the high defect density after annealing. A high V-shape defect density is still found in the implanted layer after an annealing at 1350°C. By lowering the dose, the layer is less damaged and no amorphization is observed. For the different doses, low Specific Contact Resistances are measured using Ti/Ni contacts. The Specific Contact Resistance value decreases from 8x10-6Ω.cm2for the high dose to 3.2x10­6Ω.cm2with decreasing the dose. Furthermore, the dopant activation ratio, evaluated by quantitative SSRM measurements, is improved at the same time from 17% (for the high dose) to 60% (for the low dose). This work demonstrates that high activation ratio can be achieved consecutively to a nitrogen implantation at reasonable implantation fluence.