Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Geochemistry, Geophysics, Geosystems, 10(16), p. 3532-3554, 2015

DOI: 10.1002/2015gc005885

Links

Tools

Export citation

Search in Google Scholar

Supercontinental inheritance and its influence on supercontinental breakup: The C entral A tlantic M agmatic P rovince and the breakup of P angea

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The Central Atlantic Magmatic Province (CAMP) is the large igneous province (LIP) that coincides with the breakup of the supercontinent Pangea. Major and trace element data, Sr-Nd-Pb radiogenic isotopes, and high-precision olivine chemistry were collected on primitive CAMP dikes from Virginia (VA). These new samples were used in conjunction with a global CAMP dataset to elucidate different mechanisms for supercontinent breakup and LIP formation. In the Eastern North America Margin, CAMP flows are found primarily in rift basins that can be divided into northern or southern groups based on different tectonic evolution, rifting histories, and supercontinental inheritance. Geochemical signatures of CAMP suggest an upper mantle source modified by subduction processes. We propose that the greater number of accretionary events or metasomatism by sediment melts as opposed to fluids on the northern versus the southern Laurentian margin during the formation of Pangea led to different subduction-related signatures in the mantle source of the northern versus southern CAMP lavas. CAMP samples have elevated Ni and low Ca in olivine phenocrysts indicating a significant pyroxenite component in the source, interpreted here as a result from subduction metasomatism. Different collisional styles during the Alleghanian orogeny in the North and South may have led to the diachroneity of the rifting of Pangea. Furthermore, due to a low angle of subduction, the Rheic plate may have underplated the lithosphere, then delaminated thus triggering both the breakup of Pangea and the formation of CAMP. This article is protected by copyright. All rights reserved.