Institute of Electrical and Electronics Engineers, IEEE Transactions on Geoscience and Remote Sensing, 1(53), p. 25-35, 2015
DOI: 10.1109/tgrs.2014.2313068
Full text: Download
A direct consequence of the TOPS acquisition geometry and the steering in azimuth of the antenna is the time-varying Doppler centroid within bursts. If this fact is not properly accommodated during SAR image formation, undesired distortions in both azimuth and range dimensions of the focused SAR images may appear. Azimuth distortions are caused by the local mismatch of both squint and topography. Range distortions arise from the inaccurate accommodation of the intrapulse motion of the platform, usually known as the stop-and-go approximation. Conventional spaceborne SAR image formation schemes will be, in general, unable to provide accurate TOPS SAR images. These distortions are discussed and evaluated for exemplary low-Earth-orbit SAR scenarios. Compensation strategies are presented and validated with TerraSAR-X TOPS data. A discussion of the potential impact on the Sentinel-1 interferometric-wide-swath and extra-wide-swath modes (i.e., TOPS) is also given.