Dissemin is shutting down on January 1st, 2025

Published in

BioScientifica, European Journal of Endocrinology, 1(155), p. 177-185, 2006

DOI: 10.1530/eje.1.02170

Links

Tools

Export citation

Search in Google Scholar

Expression of adrenomedullin in adipose tissue of lean and obese women

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective: Adrenomedullin (AM), a potent vasodilatator and antioxidative peptide, was shown recently to be expressed by adipose tissue. The aim of our study was to investigate the precise localization of AM within human adipose tissue, and to examine AM regulation in obesity. Design: Subcutaneous (SC) and omental (OM) adipose tissues from 9 lean and 13 obese women were profiled for AM expression changes. Preadipocytes from human adipose tissue were isolated and differentiated under defined adipogenic conditions. Methods: AM expression was analyzed by immunohistochemistry, in situ hybridization and quantitative RT-PCR. Results: A strong AM expression was observed in vessel walls, stromal cell clusters and isolated stromal cells, some of them being CD 68 positive, whereas mature adipocytes were not labeled. Calcitonin receptor-like receptor and receptor activity-modifying proteins (RAMP) 2 and RAMP 3 were expressed in vessel walls. In vitro, preadipocytes of early differentiation stages spontaneously secreted AM. No difference in AM localization was found between SC and OM adipose tissue. AM levels in SC tissue did not differ between lean and obese subjects. By contrast, AM levels in OM tissue were significantly higher in obese as compared with lean women. Moreover, we found a positive relationship between OM AM and tumor necrosis factor α mRNA levels and AM-immunoreactive area in OM tissue followed the features of the metabolic syndrome. Conclusion: Stromal cells from human adipose tissue, including macrophages, produce AM. Its synthesis increased in the OM territory during obesity and paralleled the features of the metabolic syndrome. Therefore, AM should be considered as a new member of the adipokine family.