Published in

American Chemical Society, ACS Photonics, 10(1), p. 998-1005, 2014

DOI: 10.1021/ph500221z

Links

Tools

Export citation

Search in Google Scholar

Ultranarrow Luminescence Linewidth of Silicon Nanocrystals and Influence of Matrix

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The luminescence linewidth of individual silicon nanocrystals was characterized by single-dot spectroscopy, and an ultranarrow linewidth of similar to 200 mu eV at 10 K was found. This value is, in fact, limited by system resolution and represents only the upper limit of the homogeneous linewidth. In addition, the effect of the matrix was investigated for nanocrystals coated with organic ligands, embedded in silicon dioxide, as well as for nanocrystals with only a thin passivating layer. It was found that, depending on the matrix, the room-temperature bandwidth may vary by an order of magnitude, where values as small as similar to 12 meV (similar to 5 nm) at 300 K were detected for nanocrystals with a thin passivation. The observed values for silicon nanocrystals are similar and even surpass some of those for direct-band-gap quantum dots. The narrow linewidth at room temperature enables the use of silicon nanocrystals for nontoxic narrow-band labeling of biomolecules and for application as phosphors in white-light-emitting devices. ; QC 20141114