Published in

Portland Press, Biochemical Society Transactions, 4(37), p. 926-930, 2009

DOI: 10.1042/bst0370926

Links

Tools

Export citation

Search in Google Scholar

Regulation of Cdc45 in the cell cycle and after DNA damage

Journal article published in 2009 by Ronan Broderick ORCID, Heinz-Peter Nasheuer
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Cdc (cell division cycle) 45 protein has a central role in the regulation of the initiation and elongation stages of eukaryotic chromosomal DNA replication. In addition, it is the main target for a Chk1 (checkpoint kinase 1)-dependent Cdc25/CDK2 (cyclin-dependent kinase 2)-independent DNA damage checkpoint signal transduction pathway following low doses of BPDE (benzo[a]pyrene dihydrodiol epoxide) treatment, which causes DNA damage similar to UV-induced adducts. Cdc45 interacts physically and functionally with the putative eukaryotic replicative DNA helicase, the MCM (mini-chromosome maintenance) complex, and forms a helicase active 'supercomplex', the CMG [Cdc45-MCM2-7-GINS (go-ichi-ni-san)] complex. These known protein-protein interactions, as well as unknown interactions and post-translational modifications, may be important for the regulation of Cdc45 and the initiation of DNA replication following DNA damage. Future studies will help to elucidate the molecular basis of this newly identified S-phase checkpoint pathway which has Cdc45 as a target.