Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Chemosphere, 9(85), p. 1481-1486

DOI: 10.1016/j.chemosphere.2011.08.043

Links

Tools

Export citation

Search in Google Scholar

Transformation products and reaction kinetics of fragrances in advanced wastewater treatment with ozone

Journal article published in 2011 by Niklas Janzen, Elke Dopp, Julia Hesse, Jessica Richards, Jochen Türk, Kai Bester ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reaction of the fragrance compounds 4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopenta[g]isochromene (HHCB), 1-(3,5,5,6,8,8-hexamethyl-6,7-dihydronaphthalen-2-yl)ethanone (AHTN), 1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene (musk xylene/MX), 1-(4-tert-butyl-2,6-dimethyl-3,5-dinitrophenyl)ethanone (musk ketone/MK), and 1-(2,3,8,8-tetramethyl-1,3,4,5,6,7-hexahydronaphthalen-2-yl)ethanone (OTNE) with ozone in tap water as well as waste water treatment plant (WWTP) effluents is described. Several transformation products are characterized by means of gas chromatography coupled to mass spectrometry. One transformation product (HHCB-Lactone) was confirmed by means of a true standard. Musk xylene and musk ketone do not react with ozone under the conditions used in this study. AHTN and HHCB reacted slowly to a multitude of transformation products, while OTNE reacted quickly to several stable transformation products. The reaction constants and half lives are used to predict removal efficiencies for full scale reactors.