Published in

American Institute of Physics, Applied Physics Letters, 26(93), p. 263306

DOI: 10.1063/1.3049130

Links

Tools

Export citation

Search in Google Scholar

Explosive vapor sensor using poly (3-hexylthiophene) and CuII tetraphenylporphyrin composite based organic field effect transistors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Organic field effect transistors based on poly(3-hexylthiophene) and CuII tetraphenylporphyrin composite were investigated as sensors for detection of vapors of nitrobased explosive compounds, viz., 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), and dinitrobenzene, which are also strong oxidizing agents. Significant changes, suitable for sensor response, were observed in transistor ``on'' current (Ion) and conductance (S) after exposure. A similar device response was, however, not observed for oxidizing agents such as benzoquinone and benzophenone. The Fourier transform infrared spectrometry experiments supported the results, where exposure to RDX and TNT vapors resulted in a significant shift in IR peaks.