Published in

Soil Science Society of America, Vadose Zone Journal, 1(10), p. 54-66, 2011

DOI: 10.2136/vzj2009.0181

Links

Tools

Export citation

Search in Google Scholar

Energy Fluxes above Three Disparate Surfaces in a Temperate Mesoscale Coastal Catchment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study is part of the long-term catchment-scale hydrological observatory, HOBE, situated in the Skjern River catchment covering 2500 km(2) on the western coast of Denmark. To gain a more detailed knowledge of how evapotranspiration is controlled by the local surface and atmospheric processes, eddy-covariance systems have been installed over an agricultural field, over a spruce [Picea abies (L.) H. Karst.] plantation, and on wet grassland. Measurements started in fall 2008, and the first annual series showed large differences in evaporative response among the surfaces. The annual sum was about 500 mm for the wet grassland and spruce plantation, while it was about 300 mm for the irrigated agricultural site. In winter, the actual evapotranspiration rate of the grassland and the forest were much larger than the available energy evaluated from the radiation balance, while at the same time large-scale sensible heat flux directed toward the ground was measured. At the agricultural site, the evapotranspiration rate was controlled by crop development with a leaf area index >= 3 being the threshold where actual evapotranspiration reached the potential rate. At the forest site, transpiration rates were severely limited due to stomatal control, which could be related to soil moisture and vapor pressure deficits. The interception evaporation was very important for total evapotranspiration. At the meadow, summer low flow in the river coincided with drying out of the meadows, which limited evapotranspiration. In late summer, evapotranspiration rates at the meadow and forest sites again increased significantly compared with radiative available energy, and again sensible heat flux directed toward the ground was observed.