Published in

American Astronomical Society, Astrophysical Journal Letters, 2(723), p. L139-L143, 2010

DOI: 10.1088/2041-8205/723/2/l139

Links

Tools

Export citation

Search in Google Scholar

SUNRISE/IMaX observations of convectively driven vortex flows in the Sun

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams and images obtained with the 1-m balloon-borne Sunrise telescope. By visual inspection of time series, we find some 3.1e-3 vortices/(Mm^2 min), which is a factor of 1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9 min, with a standard deviation of 3.2 min. In addition, we find several events appearing at the same locations along the duration of the time series (31.6 min). Such recurrent vortices show up in the proper motion flow field map averaged over the time series. The typical vertical vorticities are <= 6e-3 1/sec, which corresponds to a period of rotation of some 35 min. The vortices show a preferred counterclockwise sense of rotation, which we conjecture may have to do with the preferred vorticity impinged by the solar differential rotation. Comment: To appear in ApJL. 5 Figs, 4 pages. The two animations associated with the work can be downloaded from http://www.iac.es/proyecto/solarhr/imaxvortex.html References updated in V2