Wiley, Journal of Animal Physiology and Animal Nutrition, 3-6(89), p. 194-198, 2005
DOI: 10.1111/j.1439-0396.2005.00557.x
Full text: Download
Near-infrared reflectance spectroscopy (NIRS) was used to predict the chemical composition, apparent digestibility and digestible nutrients and energy content of commercial extruded compound foods for dogs. Fifty-six foods of known chemical composition and in vivo apparent digestibility were analysed overall and 51 foods were used to predict gross energy digestibility and digestible energy content. Modified partial least square calibration models were developed for organic matter (OM), crude protein (CP), ether extract (EE), crude fibre (CF), nitrogen free extracts (NFE) and gross energy (GE) content, the apparent digestibility (OMD, CPD, EED, NFED and GED) and the digestible nutrient and energy content (DOM, DCP, DEE, DNFE and DE) of foods. The calibration equations obtained were evaluated by the standard error and the determination coefficient of cross-validation. The cross-validation coefficients of determination (R) were 0.61, 0.99, 0.91, 0.96, 0.94 and 0.92 for OM, CP, EE, CF, NFE and GE, the corresponding standard error of cross-validation (SECV) being 5.80, 3.51, 13.35, 3.64 and 16.95 g/kg dry matter (DM) and 0.29 MJ/kg DM respectively. The prediction of apparent digestibility was slightly less accurate, but NIRS prediction of digestible nutrient (g/kg DM) and DE (MJ/kg DM) gave satisfactory results, with high R (0.93, 0.97, 0.93, 0.83 and 0.93 for DOM, DCP, DEE, DNFE and DE respectively) and relatively low SECV (11.55, 6.85, 12.14 and 22.98 g/kg DM and 0.47 MJ/kg DM). It is concluded that the precision of NIRS in predicting the energy value of compound extruded foods for dogs is similar or better than by proximate analysis, as well as being faster and more accurate.