Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Pattern Recognition, 4(45), p. 1531-1539, 2012

DOI: 10.1016/j.patcog.2011.09.003

Links

Tools

Export citation

Search in Google Scholar

Regularized tessellation density estimation with bootstrap aggregation and complexity penalization

Journal article published in 2012 by Matthew Browne ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Locally adaptive density estimation presents challenges for parametric or non-parametric estimators. Several useful properties of tessellation density estimators (TDEs), such as low bias, scale invariance and sensitivity to local data morphology, make them an attractive alternative to standard kernel techniques. However, simple TDEs are discontinuous and produce highly unstable estimates due to their susceptibility to sampling noise. With the motivation of addressing these concerns, we propose applying TDEs within a bootstrap aggregation algorithm, and incorporating model selection with complexity penalization. We implement complexity reduction of the TDE via sub-sampling, and use information-theoretic criteria for model selection, which leads to an automatic and approximately ideal bias/variance compromise. The procedure yields a stabilized estimator that automatically adapts to the complexity of the generating distribution and the quantity of information at hand, and retains the highly desirable properties of the TDE. Simulation studies presented suggest a high degree of stability and sensitivity can be obtained using this approach.