Springer, Lecture Notes in Computer Science, p. 182-196, 2015
DOI: 10.1007/978-3-319-27932-9_16
Full text: Download
Our goal is to build a Food and Drink (FD) gazetteer that can serve for classification of general, FD-related concepts, efficient faceted search or automated semantic enrichment. Fully supervised design of a domain-specific models "ex novo" is not scalable. Integration of several ready knowledge bases is tedious and does not ensure coverage. Completely data-driven approaches require a large amount of training data, which is not always available. In cases when the domain is not very specific (as the FD domain), re-using encyclopedic knowledge bases like Wikipedia may be a good idea. We propose here a semi-supervised approach, that uses a restricted Wikipedia as a base for the modeling, achieved by selecting a domain-relevant Wikipedia category as root for the model and all its subcategories, combined with expert and data-driven pruning of irrelevant categories.