Published in

IOP Publishing, Journal of Physics: Conference Series, (305), p. 012045, 2011

DOI: 10.1088/1742-6596/305/1/012045

Links

Tools

Export citation

Search in Google Scholar

Analysis of nonlinear deformations and damage in CFRP textile laminates

Journal article published in 2011 by H. Ullah, A. R. Harland, T. Lucas, D. Price, V. V. Silberschmidt ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Carbon fibre-reinforced polymer (CFRP) textile composites are widely used in aerospace, automotive and construction components and structures thanks to their relatively low production costs, higher delamination and impact strength. They can also be used in various products in sports industry. These products are usually exposed to different in-service conditions such as large bending deformation and multiple impacts. Composite materials usually demonstrate multiple modes of damage and fracture due to their heterogeneity and microstructure, in contrast to more traditional homogeneous structural materials like metals and alloys. Damage evolution affects both their in-service properties and performance that can deteriorate with time. These damage modes need adequate means of analysis and investigation, the major approaches being experimental characterisation, numerical simulations and microtomography analysis. This research deals with a deformation behaviour and damage in composite laminates linked to their quasi-static bending. Experimental tests are carried out to characterise the behaviour of woven CFRP material under large-deflection bending. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus/Explicit to study the deformation behaviour and damage in woven CFRP laminates. Multiple layers of bilinear cohesive-zone elements are employed to model the onset and progression of inter-ply delamination process. X-ray Micro-Computed Tomography (MicroCT) analysis is carried out to investigate internal damage mechanisms such as cracking and delaminations. The obtained results of simulations are in agreement with experimental data and MicroCT scans.