Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Computers and Electronics in Agriculture, 2(64), p. 120-132

DOI: 10.1016/j.compag.2008.04.005

Links

Tools

Export citation

Search in Google Scholar

Sun, wind and water flow as energy supply for small stationary data acquisition platforms

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The deployment of large mesh-type wireless networks is a challenge due to the multitude of arising issues. Perpetual operation of a network node is undoubtedly one of the major goals of any energy-aware protocol or power-efficient hardware platform. Energy harvesting has emerged as the natural way to keep small stationary hardware platforms running, even when operating continuously as network routing devices. This paper analyses solar radiation, wind and water flow as feasible energy sources that can be explored to meet the energy needs of a wireless sensor network router within the context of precision agriculture, and presents a multi-powered platform solution for wireless devices. Experimental results prove that our prototype, the MPWiNodeX, can manage simultaneously the three energy sources for charging a NiMH battery pack, resulting in an almost perpetual operation of the evaluated ZigBee network router. in addition to this, the energy scavenging techniques double up as sensors, yielding data on the amount of solar radiation, water flow and wind speed, a capability that avoids the use of specific sensors.