Published in

Wiley, Journal of Leukocyte Biology, 6(82), p. 1437-1445, 2007

DOI: 10.1189/jlb.10.1189

Wiley, Journal of Leukocyte Biology, 6(82), p. 1437-1445, 2007

DOI: 10.1189/jlb.0507289

Links

Tools

Export citation

Search in Google Scholar

Mycobacterium bovis BCG disrupts the interaction of Rab7 with RILP contributing to inhibition of phagosome maturation

Journal article published in 2007 by J. Sun ORCID, A.-E. Deghmane, H. Soualhine ORCID, T. Hong, C. Bucci, A. Solodkin, Z. Hmama
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Phagosomes containing M. tuberculosis and M. bovis BCG interact normally with early endosomes but fail to fuse with late endosomes and lysosomes. Whereas many early events of mycobacterial phagosomes have been elucidated, the exact mechanism of the inhibition of fusion with lysosomes is still unclear. Several Rab GTPase proteins were shown to be involved in membrane fusion and vesicular transport. In particular, Rab7 associates with the phagosomal membrane and regulates the fusion between late endosomes and lysosomes. This function of Rab7 was shown to be mediated in epithelial cell models by the Rab7 effector RILP (Rab7-interacting lysosomal protein). However, the relevance of Rab7-RILP interaction to phagosome biogenesis in macrophage infected with mycobacteria is still unknown. In this study, cotransfection of RAW 264.7 cells with Rab7 and RILP revealed that Rab7-RILP interaction occurs in macrophages ingesting latex beads. Thereafter, this cell system model was used to demonstrate that infection with live but not killed M. bovis BCG inhibited RILP recruitment despite Rab7 acquisition by the phagosome. Further investigation using immobilized RILP to pull down active Rab7 (GTP-bound form) from macrophage lysates demonstrated that inactive Rab7 (GDP-bound form) predominates in cells infected with live BCG. In addition, cell-free system experiments demonstrated that BCG culture supernatant contains a factor that catalyzes the GTP/GDP switch on recombinant Rab7 molecules. Such a factor was shown to diffuse beyond BCG phagosomes and target other Rab7-positive compartments. These findings suggest that live mycobacteria express within the macrophage a Rab7 deactivating factor leading to abortion of RILP-mediated fusion with lysosomes.